RABBIT ANTI CLOSTRIDIA SPP Biotin

Price:
430 EUR
516 USD
356 GBP
known as: RABBIT ANTI CLOSTRIDIA SPP Biotin
Catalog number: genta-ABS0583
Product Quantity: 1 ml
Category:
Supplier: AbD

   CAPTCHA Image   Reload Image

Gene target: clostridia spp

Related genes to: RABBIT ANTI CLOSTRIDIA SPP Biotin

Symbol : biotin NIH gene
LocusTag : Bathy11g00270
chromosome : 11
description : biotin synthase
type of gene : protein-coding
Modification date : 2015-06-26
Symbol : SPP NIH gene
LocusTag : PRCDC_1456300
description : signal peptide peptidase
type of gene : protein-coding
Modification date : 2015-10-07

Related Pathways to: RABBIT ANTI CLOSTRIDIA SPP Biotin

Gene about :biotin
Pathway :Sc Protein Modifications
biotin

Related product to: RABBIT ANTI CLOSTRIDIA SPP Biotin

Related Articles about: RABBIT ANTI CLOSTRIDIA SPP Biotin

Evaluation of selected Indian medicinal plants for antagonistic potential against Malassezia spp. and the synergistic effect of embelin in combination with ketoconazole.

The genus Malassezia comprises of extremely lipophilic yeasts secreting lipases as a vital factor for survival. They are emerging as opportunistic pathogens in medical microbiology and dermatology by causing recurring and recalcitrant infection. Combinatorial therapy is a constructive way to combat infectious diseases. In that prospect, totally 16 Indian medicinal plants were screened, among which a maximum degree of antimicrobial activity was ascertained in Embelia ribes. Subsequently embelin was identified as the bioactive principle with antagonistic potential by comparative antimicrobial assay and FTIR analysis. The MIC of embelin was determined as 400 μg/ml exhibiting ∼75% of growth inhibition. Further, a fungistatic activity based on anti-lipase potential (65-89%) of embelin has been clearly substantiated by XTT and lipase assay. In addition, embelin exhibited a synergistic effect with the antifungal drug ketoconazole (KTZ) against four different Malassezia spp. with FIC index of 0.5. Therefore, the combinations of embelin and KTZ may represent a promising therapeutic regimen to treat Malassezia infections with subjugated clinical and environmental toxicity. To the best of our knowledge, this is the first report delineating the anti-lipase activity of embelin and in vitro synergistic interaction between embelin and KTZ against Malassezia spp. - Source :PubMed

Biofilm formation and disinfectant resistance of Salmonella spp. in mono- and dual-species with Pseudomonas aeruginosa.

This study aimed to evaluate the biofilm formation and disinfectant resistance of Salmonella cells in mono- and dual-species biofilms with Pseudomonas aeruginosa, and to investigate the role of extracellular polymeric substances (EPS) in protection of biofilms against disinfection treatment. - Source :PubMed

Reciprocal cooperation of phytochemicals and micronutrients against typical and atypical forms of Borrelia spp.

Borrelia spp., a causative pathogenic factor of Lyme disease, has become a major public health threat. Current treatments based on antibiotics often lead to relapse after their withdrawal. Naturally derived substances that could work synergistically to display higher efficacy compared to the individual components may serve as a resource for the development of novel approaches to combat both active and latent forms of Borrelia spp. - Source :PubMed

Capsular Polysaccharides of Lactobacillus spp.: Theoretical and Practical Aspects of Simple Visualization Methods.

Lactobacillus strains can synthesize capsular polysaccharides (CPS), which are important substances in the dairy industry-they exhibit many important technological as well as health-promoting properties. Technological advancements have made it possible to detect bacterial capsules using costly and labor-intensive methods, such as serological reactions, molecular genetic techniques, and electron microscopy. Light microscopy, which is the method of interest in this paper, is one of the most widely accessible and cheapest techniques. CPS may be observed under a light microscope after staining bacterial cells and the background with a basic die and an acidic die, respectively (negative-positive staining), with the capsules remaining transparent. The literature offers many polysaccharide staining methods, but due to the considerable structural diversity of CPS and possible dye-capsule interactions, a suitable staining technique should be carefully selected for each strain. The current study showed that not all methods adequately reveal Lactobacillus CPS, with the most effective ones being those proposed by Hiss and Maneval. - Source :PubMed

Sylvatic Plague Vaccine Partially Protects Prairie Dogs (Cynomys spp.) in Field Trials.

Sylvatic plague, caused by Yersinia pestis, frequently afflicts prairie dogs (Cynomys spp.), causing population declines and local extirpations. We tested the effectiveness of bait-delivered sylvatic plague vaccine (SPV) in prairie dog colonies on 29 paired placebo and treatment plots (1-59 ha in size; average 16.9 ha) in 7 western states from 2013 to 2015. We compared relative abundance (using catch per unit effort (CPUE) as an index) and apparent survival of prairie dogs on 26 of the 29 paired plots, 12 with confirmed or suspected plague (Y. pestis positive carcasses or fleas). Even though plague mortality occurred in prairie dogs on vaccine plots, SPV treatment had an overall positive effect on CPUE in all three years, regardless of plague status. Odds of capturing a unique animal were 1.10 (95% confidence interval [C.I.] 1.02-1.19) times higher per trap day on vaccine-treated plots than placebo plots in 2013, 1.47 (95% C.I. 1.41-1.52) times higher in 2014 and 1.19 (95% C.I. 1.13-1.25) times higher in 2015. On pairs where plague occurred, odds of apparent survival were 1.76 (95% Bayesian credible interval [B.C.I.] 1.28-2.43) times higher on vaccine plots than placebo plots for adults and 2.41 (95% B.C.I. 1.72-3.38) times higher for juveniles. Our results provide evidence that consumption of vaccine-laden baits can protect prairie dogs against plague; however, further evaluation and refinement are needed to optimize SPV use as a management tool. - Source :PubMed

Gentaur adresses


GENTAUR Europe BVBA
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45
Fax 0032 16 50 90 45
info@gentaur.com
GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50
Fax 01 43 25 01 60
france@gentaur.com
dimi@gentaur.com
GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531
Fax 020 8445 9411
uk@gentaur.com
GENTAUR Poland Sp. z o.o.
ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
Tel 058 710 33 44
Fax 058 710 33 48
poland@gentaur.com
GENTAUR Nederland BV
Kuiper 1
5521 DG Eersel Nederland
Tel 0208-080893
Fax 0497-517897
nl@gentaur.com
GENTAUR SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6, 24122 Bergamo
Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com
GENTAUR bulgaria
53 Iskar Str. Kokalyane,
Sofia 1191
Tel 0035929830070
Fax 0035929830072
sofia@gentaur.com
GENTAUR Spain
Tel 0911876558
spain@gentaur.com
GENTAUR USA
Genprice Inc, Logistics
547 Yurok Circle
San Jose, CA 95123
invoicing/ accounting:
6017 Snell Ave, Suite 357
San Jose, CA. 96123
Tel 001 408 780 0908
jane@gentaur.com