Mouse IgG2b, Control, azide_free; flow_IH, for use w_Human cells_tissues

1162 EUR
1394 USD
964 GBP
known as: Mouse IgG2b, Control, azide_free; flow_IH, use w_Human cells_tissues
Catalog number: genta-YSRTMCA691XZ
Product Quantity: vial
Supplier: Accu

   CAPTCHA Image   Reload Image

Gene target: igg2b ih w cells tissues

Related genes to: Mouse IgG2b, Control, azide_free; flow_IH, for use w_Human cells_tissues

Symbol : IGG2B NIH gene
Synonyms : IgG
description : Ig gamma 2b chain constant region
type of gene : other
Modification date : 2015-11-15

Related Pathways to: Mouse IgG2b, Control, azide_free; flow_IH, for use w_Human cells_tissues

Gene about :cells
Pathway :Hs Oncostatin M Signaling Pathway
Gene about :Tissues
Pathway :Rn Statin Pathway
Gene about :Control
Pathway :Rn Wnt Signaling Pathway NetPath

Related product to: Mouse IgG2b, Control, azide_free; flow_IH, for use w_Human cells_tissues

Related Articles about: Mouse IgG2b, Control, azide_free; flow_IH, for use w_Human cells_tissues

Production and Purification of a Polyclonal Antibody Against Purified Mouse IgG2b in Rabbits Towards Designing Mouse Monoclonal Isotyping Kits.

Mouse IgG subclasses containing IgG1, IgG2a, IgG2b and IgG3 have been defined and described both physiochemically and immunologically. - Source :PubMed

Lactoferrin causes IgA and IgG2b isotype switching through betaglycan binding and activation of canonical TGF-β signaling.

Lactoferrin (LF), a pleiotropic iron-binding glycoprotein, is known to modulate the humoral immune response. However, its exact role in Ig synthesis has yet to be elucidated. In this study, we investigated the effect of LF on Ig production by mouse B cells and its underlying mechanisms. LF, like transforming growth factor (TGF)-β1, stimulated B cells to produce IgA and IgG2b, while downregulating other isotypes. Using limiting dilution analysis, LF was shown to increase the frequency of IgA-secreting B-cell clones. This was paralleled by an increase in Ig germ-line α (GLα) transcripts, indicating that LF plays a role as an IgA switch factor. Interestingly, LF directly interacted with betaglycan (TGF-β receptor III, TβRIII) and in turn induced phosphorylation of TβRI and Smad3 through formation of the TβRIII/TβRII/TβRI complex, leading to IgA isotype switching. Peroral administration of LF increased intestinal/serum IgA production as well as number of IgA plasma cells in lamina propria. Finally, we found that LF has an adjuvant activity when nontoxigenic Salmonella typhimurium was inoculated perorally, conferring protection against intragastrical infection of toxigenic S. typhimurium. These results suggest that LF has an important effect on the mucosal/systemic IgA response and can contribute to protection against intestinal pathogens. - Source :PubMed

OVA-bound nanoparticles induce OVA-specific IgG1, IgG2a, and IgG2b responses with low IgE synthesis.

There is an urgent requirement for a novel vaccine that can stimulate immune responses without unwanted toxicity, including IgE elevation. We examined whether antigen ovalbumin (OVA) conjugated to the surface of nanoparticles (NPs) (OVA-NPs) with average diameter of 110nm would serve as an immune adjuvant. When BALB/c mice were immunized with OVA-NPs, they developed sufficient levels of OVA-specific IgG1 antibody responses with low levels of IgE synthesis, representing helper T (Th)2-mediated humoral immunity. OVA-specific IgG2a and IgG2b responses (i.e., Th1-mediated immunity) were also induced by secondary immunization with OVA-NPs. As expected, immunization with OVA in alum (OVA-alum) stimulated humoral immune responses, including IgG1 and IgE antibodies, with only low levels of IgG2a/IgG2b antibodies. CD4-positive T cells from mice primed with OVA-NPs produced substantial levels of IL-21 and IL-4, comparable to those from OVA-alum group. The irradiated mice receiving OVA-NPs-primed B cells together with OVA-alum-primed T cells exhibited enhanced anti-OVA IgG2b responses relative to OVA-alum-primed B cells and T cells following stimulation with OVA-NPs. Moreover, when OVA-NPs-primed, but not OVA-alum-primed, B cells were cultured in the presence of anti-CD40 monoclonal antibody, IL-4, and IL-21, or LPS plus TGF-β in vitro, OVA-specific IgG1 or IgG2b antibody responses were elicited, suggesting that immunization with OVA-NPs modulates B cells to generate IgG1 and IgG2b responses. Thus, OVA-NPs might exert their adjuvant action on B cells, and they represent a promising potential vaccine for generating both IgG1 and IgG2a/IgG2b antibody responses with low IgE synthesis. - Source :PubMed

Heavy chain-only IgG2b llama antibody effects near-pan HIV-1 neutralization by recognizing a CD4-induced epitope that includes elements of coreceptor- and CD4-binding sites.

The conserved HIV-1 site of coreceptor binding is protected from antibody-directed neutralization by conformational and steric restrictions. While inaccessible to most human antibodies, the coreceptor site has been shown to be accessed by antibody fragments. In this study, we used X-ray crystallography, surface plasmon resonance, and pseudovirus neutralization to characterize the gp120-envelope glycoprotein recognition and HIV-1 neutralization of a heavy chain-only llama antibody, named JM4. We describe full-length IgG2b and IgG3 versions of JM4 that target the coreceptor-binding site and potently neutralize over 95% of circulating HIV-1 isolates. Contrary to established trends that show improved access to the coreceptor-binding region by smaller antibody fragments, the single-domain (VHH) version of JM4 neutralized less well than the full-length IgG2b version of JM4. The crystal structure at 2.1-Å resolution of VHH JM4 bound to HIV-1 YU2 gp120 stabilized in the CD4-bound state by the CD4-mimetic miniprotein, M48U1, revealed a JM4 epitope that combined regions of coreceptor recognition (including the gp120 bridging sheet, V3 loop, and β19 strand) with gp120 structural elements involved in recognition of CD4 such as the CD4-binding loop. The structure of JM4 with gp120 thus defines a novel CD4-induced site of vulnerability involving elements of both coreceptor- and CD4-binding sites. The potently neutralizing JM4 IgG2b antibody that targets this newly defined site of vulnerability adds to the expanding repertoire of broadly neutralizing antibodies that effectively neutralize HIV-1 and thereby potentially provides a new template for vaccine development and target for HIV-1 therapy. - Source :PubMed

The generation and evaluation of two panels of epitope-matched mouse IgG1, IgG2a, IgG2b and IgG3 antibodies specific for Plasmodium falciparum and Plasmodium yoelii merozoite surface protein 1-19 (MSP1(19)).

Murine immunoglobulin G (IgG) plays an important role in mediating protective immune responses to malaria. We still know relatively little about which IgG subclasses protect against this disease in mouse models, although IgG2a and IgG2b are considered to be the most potent and dominate in successful passive transfer experiments in rodent malarias. To explore the mechanism(s) by which the different mouse IgG subclasses may mediate a protective effect, we generated mouse IgG1, IgG2a, IgG2b and IgG3 specific for the C-terminal 19-kDa region of Plasmodium falciparum merozoite surface protein 1 (PfMSP1(19)), and to the homologous antigen from Plasmodium yoelii (P. yoelii), both major targets of protective immune responses. This panel of eight IgGs bound antigen with an affinity comparable to that seen for their epitope-matched parental monoclonal antibodies (mAbs) from which they were derived, although for reasons of yield, we were only able to explore the function of mouse IgG1 recognizing PfMSP1(19) in detail, both in vitro and in vivo. Murine IgG1 was as effective as the parental human IgG from which it was derived at inducing NADPH-mediated oxidative bursts and degranulation from neutrophils. Despite showing efficacy in in vitro functional assays with neutrophils, the mouse IgG1 failed to protect against parasite challenge in vivo. The lack of protection afforded by MSP1(19)-specific IgG1 against parasite challenge in wild type mice suggests that this Ab class does not play a major role in the control of infection with mouse malaria in the Plasmodium berghei transgenic model. - Source :PubMed

Gentaur adresses

Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45
Fax 0032 16 50 90 45
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50
Fax 01 43 25 01 60
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531
Fax 020 8445 9411
GENTAUR Poland Sp. z o.o.
ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
Tel 058 710 33 44
Fax 058 710 33 48
GENTAUR Nederland BV
Kuiper 1
5521 DG Eersel Nederland
Tel 0208-080893
Fax 0497-517897
Piazza Giacomo Matteotti, 6, 24122 Bergamo
Tel 02 36 00 65 93
Fax 02 36 00 65 94
GENTAUR bulgaria
53 Iskar Str. Kokalyane,
Sofia 1191
Tel 0035929830070
Fax 0035929830072
Tel 0911876558
Genprice Inc, Logistics
547 Yurok Circle
San Jose, CA 95123
invoicing/ accounting:
6017 Snell Ave, Suite 357
San Jose, CA. 96123
Tel 001 408 780 0908