Mouse IgG1+2a+2b+3 (Fc) (min X Hu, Bov, Rb Sr Prot), Cyanine Cy3

Price:
627 EUR
752 USD
520 GBP
known as: Mouse IgG1+2a+2b+3 (Fc) (min X Hu, Bov, Rb Sr Prot), Cyanine Cy3
Catalog number: genta-JGM165164
Product Quantity: 1 mg.
Category:
Supplier: Accu

   CAPTCHA Image   Reload Image

Gene target: igg1 2a 2b 3 fc min x hu bov rb sr prot cyanine

Related genes to: Mouse IgG1+2a+2b+3 (Fc) (min X Hu, Bov, Rb Sr Prot), Cyanine Cy3

Symbol : 2a NIH gene
LocusTag : SBLVs2gp1
description : 2a protein
type of gene : protein-coding
Modification date : 2015-06-26
Symbol : 2b NIH gene
LocusTag : GfMMVs2_gp2
description : 2b protein
type of gene : protein-coding
Modification date : 2015-06-26
Symbol : min NIH gene
Synonyms : mi
dbXrefs : FLYBASE:FBgn0002747
chromosome : 2
map location : 56E-56E|2-90 cM
description : mini
type of gene : unknown
Modification date : 2016-05-09
Symbol : Prot NIH gene
dbXrefs : MGI:MGI:107578
chromosome : 18
description : proline transporter
type of gene : protein-coding
Symbol from nomenclature authority : Prot
Full name from nomenclature authority : proline transporter
Nomenclature status : O
Modification date : 2016-07-02

Related Pathways to: Mouse IgG1+2a+2b+3 (Fc) (min X Hu, Bov, Rb Sr Prot), Cyanine Cy3

Gene about :IgG1
Pathway :Hs Allograft Rejection
IgG1

Related product to: Mouse IgG1+2a+2b+3 (Fc) (min X Hu, Bov, Rb Sr Prot), Cyanine Cy3

Related Articles about: Mouse IgG1+2a+2b+3 (Fc) (min X Hu, Bov, Rb Sr Prot), Cyanine Cy3

Light regulation of nitrate reductase by catalytic subunits of protein phosphatase 2A.

PP2A catalytic subunit C2 is of special importance for light/dark regulation of nitrate reductase activity. The level of unmethylated PP2A catalytic subunits decreases in darkness. Protein phosphatase 2A (PP2A) dephosphorylates and activates nitrate reductase (NR) in photosynthetically active tissue when plants are transferred from darkness to light. In the present work, investigation of Arabidopsis thaliana PP2A mutant lines revealed that one of the five PP2A catalytic subunit genes, e.g., C2, was of special importance for NR activation. Impairment of NR activation was, especially pronounced in the c2c4 double mutant. Though weaker, NR activation was also impaired in the c2 single mutant, and c1c2 and c2c5 double mutants. On the other hand, NR activation in the c4c5 double mutant was as efficient as in WT. The c4 single mutant had low PP2A activity, whereas the c2 single mutant possessed WT levels of extractable PP2A activity. PP2A activity was low in both c2c4 and c4c5. Differences in extracted PP2A activity among mutants did not strictly correlate with differences in NR activation, but underpinned that C2 has a special function in NR activation in vivo. The terminal leucine in PP2A catalytic subunits is generally methylated to a high degree, but regulation and impact of methylation/demethylation is barely studied. In WT and PP2A mutants, the level of unmethylated PP2A catalytic subunits decreased during 45 min of darkness, but did not change much when light was switched on. In leucine carboxyl methyl transferase1 (LCMT1) knockout plants, which possess mainly unmethylated PP2A, NR was still activated, although not fully as efficient as in WT. - Source :PubMed

MinE conformational dynamics regulate membrane binding, MinD interaction, and Min oscillation.

In Escherichia coli MinE induces MinC/MinD to oscillate between the ends of the cell, contributing to the precise placement of the Z ring at midcell. To do this, MinE undergoes a remarkable conformational change from a latent 6β-stranded form that diffuses in the cytoplasm to an active 4β-stranded form bound to the membrane and MinD. How this conformational switch occurs is not known. Here, using hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) we rule out a model in which the two forms are in rapid equilibrium. Furthermore, HDX-MS revealed that a MinE mutant (D45A/V49A), previously shown to produce an aberrant oscillation and unable to assemble a MinE ring, is more rigid than WT MinE. This mutant has a defect in interaction with MinD, suggesting it has difficulty in switching to the active form. Analysis of intragenic suppressors of this mutant suggests it has difficulty in releasing the N-terminal membrane targeting sequences (MTS). These results indicate that the dynamic association of the MTS with the β-sheet is fine-tuned to balance MinE's need to sense MinD on the membrane with its need to diffuse in the cytoplasm, both of which are necessary for the oscillation. The results lead to models for MinE activation and MinE ring formation. - Source :PubMed

Chronic Trichuris muris infection causes neoplastic change in the intestine and exacerbates tumour formation in APC min/+ mice.

Incidences of infection-related cancers are on the rise in developing countries where the prevalence of intestinal nematode worm infections are also high. Trichuris muris (T. muris) is a murine gut-dwelling nematode that is the direct model for human T. trichiura, one of the major soil-transmitted helminth infections of humans. In order to assess whether chronic infection with T. muris does indeed influence the development of cancer hallmarks, both wild type mice and colon cancer model (APC min/+) mice were infected with this parasite. Parasite infection in wild type mice led to the development of neoplastic change similar to that seen in mice that had been treated with the carcinogen azoxymethane. Additionally, both chronic and acute infection in the APCmin/+ mice led to an enhanced tumour development that was distinct to the site of infection suggesting systemic control. By blocking the parasite specific T regulatory response in these mice, the increase in the number of tumours following infection was abrogated. Thus T. muris infection alone causes an increase in gut pathologies that are known to be markers of cancer but also increases the incidence of tumour formation in a colon cancer model. The influence of parasitic worm infection on the development of cancer may therefore be significant. - Source :PubMed

Type 2B von Willebrand disease with or without large multimers: A distinction of the two sides of the disorder is long overdue.

Most, but not all patients with type 2B von Willebrand disease (VWD)-which features gain-of-function mutations in the A1 domain of von Willebrand factor (VWF)-have no circulating large VWF multimers. Similarities and differences were analysed in 33 type 2B patients, 12 with a normal and 21 with an abnormal multimer pattern, to see whether they should be considered separately. The minimum aggregating dose of ristocetin was similarly reduced in both patient groups, and modulated by their underlying VWF mutations. Platelet VWF content was normal in all patients lacking in large multimers, but sometimes reduced in those with a normal multimer pattern. All the former patients and none of the latter had persistent or transient thrombocytopenia. A short VWF half-life (affecting plasma VWF levels) was seen in both groups, but more pronounced in patients without large multimers. Bleeding scores were also high in all patients, but more so in those without large multimers, apparently regardless of their platelet count. The marked phenotypic heterogeneity of type 2B VWD concerns not only patients' VWF multimer pattern, but also their bleeding risk, and consequently their appropriate treatment too. Hence the need to clearly distinguish between type 2B VWD with normal or abnormal VWF multimers. - Source :PubMed

Efficacy and safety of recombinant human lymphotoxin-α derivative with cisplatin and fluorouracil in patients with metastatic esophageal squamous cell carcinoma: A randomized, multicenter, open-label, controlled, phase 2b trial.

Recombinant human lymphotoxin-α derivative (rhLTα-Da) is a lymphotoxin-α derivative that is missing 27 N-terminal amino acid residues. Previous studies indicated a benefit from the addition of rhLTα-Da to cisplatin-based treatment in patients with metastatic esophageal squamous cell carcinoma. The current study was conducted to evaluate the efficacy and safety of rhLTα-Da plus cisplatin and fluorouracil (PF) in patients with mESCC. - Source :PubMed

Gentaur adresses


GENTAUR Europe BVBA
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45
Fax 0032 16 50 90 45
info@gentaur.com
GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50
Fax 01 43 25 01 60
france@gentaur.com
dimi@gentaur.com
GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531
Fax 020 8445 9411
uk@gentaur.com
GENTAUR Poland Sp. z o.o.
ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
Tel 058 710 33 44
Fax 058 710 33 48
poland@gentaur.com
GENTAUR Nederland BV
Kuiper 1
5521 DG Eersel Nederland
Tel 0208-080893
Fax 0497-517897
nl@gentaur.com
GENTAUR SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6, 24122 Bergamo
Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com
GENTAUR bulgaria
53 Iskar Str. Kokalyane,
Sofia 1191
Tel 0035929830070
Fax 0035929830072
sofia@gentaur.com
GENTAUR Spain
Tel 0911876558
spain@gentaur.com
GENTAUR USA
Genprice Inc, Logistics
547 Yurok Circle
San Jose, CA 95123
invoicing/ accounting:
6017 Snell Ave, Suite 357
San Jose, CA. 96123
Tel 001 408 780 0908
jane@gentaur.com