Mouse IgG1, Negative Control, Biotin

Price:
340 EUR
408 USD
282 GBP
known as: Mouse IgG1, Negative Control, Biotin
Catalog number: genta-YSRTMCA1209B
Product Quantity: 0.1 mg.
Category:
Supplier: Accu

   CAPTCHA Image   Reload Image

Gene target: igg1

Related genes to: Mouse IgG1, Negative Control, Biotin

Symbol : biotin NIH gene
LocusTag : Bathy11g00270
chromosome : 11
description : biotin synthase
type of gene : protein-coding
Modification date : 2015-06-26

Related Pathways to: Mouse IgG1, Negative Control, Biotin

Gene about :IgG1
Pathway :Hs Allograft Rejection
IgG1
Gene about :Control
Pathway :Rn Wnt Signaling Pathway NetPath
Control
Gene about :biotin
Pathway :Sc Protein Modifications
biotin

Related product to: Mouse IgG1, Negative Control, Biotin

Related Articles about: Mouse IgG1, Negative Control, Biotin

Outcomes of oral biotin treatment in patients with biotinidase deficiency - Twenty years follow-up.

Biotinidase deficiency (BTD) is an inborn error of biotin metabolism inherited as an autosomal recessive trait. Due to the, biotinidase deficiency, biotin is not recycled. Individuals with BTD usually exhibit neurological and cutaneous abnormalities unless treated with biotin. Supplementation with biotin may either ameliorate or if early introduced even prevent symptoms when introduced presymptomatically. - Source :PubMed

Analysis of K-Ras Interactions by Biotin Ligase Tagging.

Mutations of the human K-Ras 4B (K-Ras) G protein are associated with a significant proportion of all human cancers. Despite this fact, a comprehensive analysis of K-Ras interactions is lacking. Our investigations focus on characterization of the K-Ras interaction network. - Source :PubMed

Click biotinylation of PLGA template for biotin receptor oriented delivery of doxorubicin hydrochloride in 4T1 cell induced breast cancer.

PLGA was functionalized with PEG and biotin using click chemistry to generate a biotin receptor targeted copolymer (Biotinylated-PEG-PLGA) which in turn was used to fabricate ultrafine nanoparticles (BPNP) of doxorubicin hydrochloride (DOX) for effective delivery in 4T1 cell induced breast cancer. However adequate entrapment of a hydrophilic bioactive like DOX in a hydrophobic polymer system made of PLGA is not usually possible. We therefore modified a conventional W/O/W emulsion method by utilizing ammonium chloride in the external phase to constrain DOX in dissolved polymer phase by supressing its inherent aqueous solubility as per common ion effect. This resulted in over eight fold enhancement in entrapment efficiency of DOX inside BPNP, which otherwise is highly susceptible to leakage due to its relatively high aqueous solubility. TEM and DLS established BPNP to be sized below 100 nm, storage stability studies showed that BPNP were stable for one month at 4°C, and in vitro release suggested significant control in drug release. Extensive in vitro and in vivo studies were conducted to propound anticancer and antiproliferative activity of BPNP. Plasma and tissue distribution study supplemented by pertinent in vivo fluorescence imaging mapped the exact fate of DOX contained inside BPNP once it was administered intravenously. A comparative safety profile via acute toxicity studies in mice was also generated to out rightly establish usefulness of BPNP. Results suggest that BPNP substantially enhance anticancer activity of DOX whilst simultaneously mitigating its toxic potential due to altered spatial and temporal presentation of drug and consequently deserve further allometric iteration. - Source :PubMed

A photocrosslinkable biotin derivative of the phosphoantigen (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) activates Vγ9Vδ2 T cells and binds to the HMBPP site of BTN3A1.

Vγ9Vδ2 T cells play an important role in the cross talk of the innate and adaptive immune system. For their activation by phosphoantigens (PAgs) both cell surface receptors the eponymous Vγ9Vδ2 T cell antigen receptors (Vγ9Vδ2 TCRs) on Vγ9Vδ2 T cells and butyrophilin 3A1 (BTN3A1) on the phosphoantigen-"presenting" cell are mandatory. To find yet undetected further contributing proteins a biotinylated, photocrosslinkable benzophenone probe BioBP-HMBPP (2) was synthesized from a known allyl alcohol in nine steps and overall 16% yield. 2 is based on the picomolar PAg (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP, 1). Laser irradiation of 2 at 308 nm initiated the photocrosslinking reaction with proteins. When the B30.2 domain of BTN3A1, which contains a positively charged PAg-binding pocket, was exposed to increasing amounts of HMBPP (1) labeling by BioBP-HMBPP (2) was reduced significantly. Since BSA labeling was not impaired, clearly 2 binds to the same site as natural ligand 1. Thus, BioBP-HMBPP (2) is a suitable tool to identify co-ligands or receptors involved in PAg-mediated T cell activation. - Source :PubMed

The Infatuation With Biotin Supplementation: Is There Truth Behind Its Rising Popularity? A Comparative Analysis of Clinical Efficacy versus Social Popularity.

Biotin, also known as Vitamin B7 or vitamin H, is a water-soluble B vitamin that acts as an essential cofactor for several carboxylases involved in the cellular metabolism of fatty acids, amino acids, and gluconeogenesis. Although there exists an incredible amount of social media hype and market advertising touting its efficacy for the improvement of hair quantity and quality, biotin's efficacy for hair remains largely unsubstantiated in scientific literature. We reviewed all pertinent scientific literature regarding the efficacy of biotin supplementation for hair growth and quality improvement, and we also investigated its popularity in society defined as a function of market analytics. To date, there have been no clinical trials conducted to investigate the efficacy of biotin supplementation for the treatment of alopecia of any kind, nor has there been any randomized controlled trial to study its effect on hair quality and quantity in human subjects. Because of the lack of clinical evidence, its use to improve hair quantity or quality is not routinely recommended. However, societal infatuation with biotin supplementation is not only propagated by its glamorization in popular media, its popularity is vastly disproportionate to the insufficient clinical evidence supporting it's efficacy in hair improvement. In other words, biotin supplements are quite "in vogue", without there being any real reason to be so.

J Drugs Dermatol. 2017;16(5):496-500.

. - Source :PubMed

Gentaur adresses


GENTAUR Europe BVBA
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45
Fax 0032 16 50 90 45
info@gentaur.com
GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50
Fax 01 43 25 01 60
france@gentaur.com
dimi@gentaur.com
GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531
Fax 020 8445 9411
uk@gentaur.com
GENTAUR Poland Sp. z o.o.
ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
Tel 058 710 33 44
Fax 058 710 33 48
poland@gentaur.com
GENTAUR Nederland BV
Kuiper 1
5521 DG Eersel Nederland
Tel 0208-080893
Fax 0497-517897
nl@gentaur.com
GENTAUR SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6, 24122 Bergamo
Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com
GENTAUR bulgaria
53 Iskar Str. Kokalyane,
Sofia 1191
Tel 0035929830070
Fax 0035929830072
sofia@gentaur.com
GENTAUR Spain
Tel 0911876558
spain@gentaur.com
GENTAUR USA
Genprice Inc, Logistics
547 Yurok Circle
San Jose, CA 95123
invoicing/ accounting:
6017 Snell Ave, Suite 357
San Jose, CA. 96123
Tel 001 408 780 0908
jane@gentaur.com