RABBIT ANTI HUMAN WNT_1 Biotin

Price:
485 EUR
582 USD
402 GBP
known as: RABBIT ANTI HUMAN WNT_1 Biotin
Catalog number: genta-ABS0526
Product Quantity: 50 µg
Category:
Supplier: AbD

   CAPTCHA Image   Reload Image

Gene target: wnt 1

Related genes to: RABBIT ANTI HUMAN WNT_1 Biotin

Symbol : biotin NIH gene
LocusTag : Bathy11g00270
chromosome : 11
description : biotin synthase
type of gene : protein-coding
Modification date : 2015-06-26
Symbol : Wnt NIH gene
chromosome : Un
description : protein Wnt-2
type of gene : protein-coding
Modification date : 2016-01-16

Related Pathways to: RABBIT ANTI HUMAN WNT_1 Biotin

Gene about :Wnt
Pathway :Hs Wnt Signaling Pathway Netpath
Wnt
Gene about :biotin
Pathway :Sc Protein Modifications
biotin

Related product to: RABBIT ANTI HUMAN WNT_1 Biotin

Related Articles about: RABBIT ANTI HUMAN WNT_1 Biotin

Targeting the Wnt Pathway in Cancer: A Review of Novel Therapeutics.

Wnt signaling is an evolutionarily conserved pathway that controls cell-to-cell interactions during embryogenesis. In adults, Wnt signaling plays a role in tissue homeostasis in almost every organ system. Aberrations within this pathway are implicated in a spectrum of human diseases. A variety of perturbations have been described in both solid and hematologic malignancies, lending way to Wnt signaling as a target for anti-cancer therapy. Of particular interest is the role of Wnt signaling in the development and maintenance of cancer stem cells, a rare population of cells that are able to maintain a tumor via self-renewal and thought to be more resistant to chemotherapy than bulk tumor cells. The ability to eradicate cancer stem cells may decrease the risk of cancer relapse and metastasis. A number of therapeutic agents specifically targeting the Wnt pathway have entered clinical trials, either as monotherapy or in combination with chemotherapy. We will provide an overview of agents that have been developed to target the Wnt pathways and a summary of pre-clinical and clinical trials. - Source :PubMed

Outcomes of oral biotin treatment in patients with biotinidase deficiency - Twenty years follow-up.

Biotinidase deficiency (BTD) is an inborn error of biotin metabolism inherited as an autosomal recessive trait. Due to the, biotinidase deficiency, biotin is not recycled. Individuals with BTD usually exhibit neurological and cutaneous abnormalities unless treated with biotin. Supplementation with biotin may either ameliorate or if early introduced even prevent symptoms when introduced presymptomatically. - Source :PubMed

The many postures of noncanonical Wnt signaling in development and diseases.

Wnt signaling regulates many aspects of vertebrate development. Its dysregulation causes developmental defects and diseases including cancer. The signaling can be categorized in two pathways: canonical and noncanonical. Canonical pathway plays a key role in regulating proliferation and differentiation of cells whilst noncanonical Wnt signaling mainly controls cellular polarity and motility. During development, noncanonical Wnt signaling is required for tissue formation. Recent studies have shown that noncanonical Wnt signaling is involved in adult tissue development and cancer progression. In this review, we try to describe and discuss the mechanisms behind the biological effects of noncanonical Wnt signaling, diseases caused by its dysregulation, and implications in adult tissue development biology. - Source :PubMed

Ror2-mediated alternative Wnt signaling regulates cell fate and adhesion during mammary tumor progression.

Cellular heterogeneity is a common feature in breast cancer, yet an understanding of the coexistence and regulation of various tumor cell subpopulations remains a significant challenge in cancer biology. In the current study, we approached tumor cell heterogeneity from the perspective of Wnt pathway biology to address how different modes of Wnt signaling shape the behaviors of diverse cell populations within a heterogeneous tumor landscape. Using a syngeneic TP53-null mouse model of breast cancer, we identified distinctions in the topology of canonical Wnt β-catenin-dependent signaling activity and non-canonical β-catenin-independent Ror2-mediated Wnt signaling across subtypes and within tumor cell subpopulations in vivo. We further discovered an antagonistic role for Ror2 in regulating canonical Wnt/β-catenin activity in vivo, where lentiviral shRNA depletion of Ror2 expression augmented canonical Wnt/β-catenin signaling activity across multiple basal-like models. Depletion of Ror2 expression yielded distinct phenotypic outcomes and divergent alterations in gene expression programs among different tumors, despite all sharing basal-like features. Notably, we uncovered cell state plasticity and adhesion dynamics regulated by Ror2, which influenced Ras Homology Family Member A (RhoA) and Rho-Associated Coiled-Coil Kinase 1 (ROCK1) activity downstream of Dishevelled-2 (Dvl2). Collectively, these studies illustrate the integration and collaboration of Wnt pathways in basal-like breast cancer, where Ror2 provides a spatiotemporal function to regulate the balance of Wnt signaling and cellular heterogeneity during tumor progression.Oncogene advance online publication, 26 June 2017; doi:10.1038/onc.2017.206. - Source :PubMed

Dual PI3K and Wnt pathway inhibition is a synergistic combination against triple negative breast cancer.

Triple negative breast cancer accounts for 15-20% of all breast cancer cases, but despite its lower incidence, contributes to a disproportionately higher rate of mortality. As there are currently no Food and Drug Administration-approved targeted agents for triple negative breast cancer, we embarked on a genomic-guided effort to identify novel targeted modalities. Analyses by our group and The Cancer Genome Atlas have identified activation of the PI3K-pathway in the majority of triple negative breast cancers. As single agent therapy is commonly subject to resistance, we investigated the use of combination therapy against compensatory pathways. Herein, we demonstrate that pan-PI3K inhibition in triple negative breast cancers results in marked activation of the Wnt-pathway. Using the combination of two inhibitors currently in clinical trial as single agents, buparlisib(pan-PI3K) and WNT974(WNT-pathway), we demonstrate significant in vitro and in vivo synergy against triple negative breast cancer cell lines and xenografts. Taken together, these observations provide a strong rationale for testing dual targeting of the PI3K and WNT-pathways in clinical trials. - Source :PubMed

Gentaur adresses


GENTAUR Europe BVBA
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45
Fax 0032 16 50 90 45
info@gentaur.com
GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50
Fax 01 43 25 01 60
france@gentaur.com
dimi@gentaur.com
GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531
Fax 020 8445 9411
uk@gentaur.com
GENTAUR Poland Sp. z o.o.
ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
Tel 058 710 33 44
Fax 058 710 33 48
poland@gentaur.com
GENTAUR Nederland BV
Kuiper 1
5521 DG Eersel Nederland
Tel 0208-080893
Fax 0497-517897
nl@gentaur.com
GENTAUR SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6, 24122 Bergamo
Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com
GENTAUR bulgaria
53 Iskar Str. Kokalyane,
Sofia 1191
Tel 0035929830070
Fax 0035929830072
sofia@gentaur.com
GENTAUR Spain
Tel 0911876558
spain@gentaur.com
GENTAUR USA
Genprice Inc, Logistics
547 Yurok Circle
San Jose, CA 95123
invoicing/ accounting:
6017 Snell Ave, Suite 357
San Jose, CA. 96123
Tel 001 408 780 0908
jane@gentaur.com