RABBIT ANTI HUMAN TGF ALPHA Biotin

Price:
499 EUR
598 USD
414 GBP
known as: RABBIT ANTI HUMAN TGF ALPHA Biotin
Catalog number: genta-ABS0507
Product Quantity: 50 µg
Category:
Supplier: AbD

   CAPTCHA Image   Reload Image

Gene target: tgf alpha

Related genes to: RABBIT ANTI HUMAN TGF ALPHA Biotin

Symbol : biotin NIH gene
LocusTag : Bathy11g00270
chromosome : 11
description : biotin synthase
type of gene : protein-coding
Modification date : 2015-06-26
Symbol : tgf NIH gene
Synonyms : TGF-beta|tgfb1
description : transforming growth factor, beta 1
type of gene : protein-coding
Other designations : Transforming growth factor beta-1|transforming growth factor-beta
Modification date : 2015-11-14

Related Pathways to: RABBIT ANTI HUMAN TGF ALPHA Biotin

Gene about :biotin
Pathway :Sc Protein Modifications
biotin

Related product to: RABBIT ANTI HUMAN TGF ALPHA Biotin

Related Articles about: RABBIT ANTI HUMAN TGF ALPHA Biotin

Analysis of K-Ras Interactions by Biotin Ligase Tagging.

Mutations of the human K-Ras 4B (K-Ras) G protein are associated with a significant proportion of all human cancers. Despite this fact, a comprehensive analysis of K-Ras interactions is lacking. Our investigations focus on characterization of the K-Ras interaction network. - Source :PubMed

Substance P promotes hepatic stellate cell proliferation and activation via the TGF-β1/Smad-3 signaling pathway.

Prolonged activation and proliferation of hepatic stellate cells (HSCs) usually results in the initiation and progression of liver fibrosis following injury. Recent studies have shown that Substance P (SP) participates in the development of fibrosis. However, whether SP is involved in liver fibrosis, especially in the activation and proliferation of HSCs, is largely unknown. In the present study, we measured the effects of a series of concentrations of SP on the cell viability and activation of HSC-T6 cells and LX2 cells. The underlying mechanism was also investigated. We found that SP effectively increased cell viability, both in an MTT assay (p<0.05) and in a lactate dehydrogenase activity assay (LDH) (p<0.05). Moreover, SP upregulated the protein expression of α-SMA and Collagen I (both p<0.05) and decreased the release of lipid droplets (LDs) (p<0.05), all of which are associated with HSC activation. Apoptosis analysis revealed that SP can attenuate the increase of cell apoptosis induced by serum withdrawal (p<0.05). Furthermore, these effects were all blocked by an SP receptor antagonist, L732138. More importantly, L732138 decreased the activation of the TGF-β1/Smad3 signaling pathway, which is highly associated with liver fibrosis. Taken together, our results demonstrate that SP can promote HSC proliferation and induce HSC activation via the TGF-β1/Smad3 signaling pathway. - Source :PubMed

NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway.

Renal fibrosis is a common pathological pathway of various chronic kidney diseases progressing to end-stage renal disease and is characterized by tubular atrophy, fibroblast/myofibroblast activation and excessive deposition of extracellular matrix (ECM). N-Myc downstream-regulated gene-2 (NDRG2) is reported to be associated with liver fibrosis in rats. However, the biological function of NDRG2 in renal fibrosis remains unclear. Therefore, we investigate the effect of NDRG2 on renal fibrosis and the underlying mechanism of NDRG2 in TGF-β1-induced renal tubular epithelial cells (HK-2). Our results show that TGF-β1 down-regulates NDRG2 mRNA and protein expression in HK-2 cells. Moreover, NDRG2 knockdown dramatically reduces the TGF-β1-induced protein and mRNA of E-cadherin and increases the TGF-β1-induced protein and mRNA expression level of α-SMA, Vimentin, Snail, Col-I, Col-III and FN; this is reversed by NDRG2 overexpression. Furthermore, NDRG2 silencing significantly increases the phosphorylation level of Smad3 (p-Smad3), which is decreased by NDRG2 overexpression, although these have no effect on the protein expression of p-Smad2 and Smad7. In addition, SIS3, a specific inhibitor of Smad3 phosphorylation, partly reverses the effect of NDRG2 knockdown on the protein and mRNA expression of epithelial-mesenchymal transition (EMT) markers and ECM components in TGF-β1-induced HK-2 cells. Taken together, our results indicate that NDRG2 knockdown promotes renal fibrosis through its effect on the protein and mRNA expression of EMT markers and ECM components by regulating the downstream Smad3 signaling pathway in renal tubular epithelial cells. Modulation of NDRG2 expression might provide a new therapy for renal fibrosis. - Source :PubMed

Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-β1: new insight into intervertebral disc regenerative medicine.

Discogenic low back pain is considered a major health concern and no etiological treatments are today available to tackle this disease. To clinically address this issue at early stages, there is a rising interest in the stimulation of local cells by in situ injection of growth factors targeting intervertebral disc (IVD) degenerative process. Despite encouraging safety and tolerability results in clinic, growth factors efficacy may be further improved. To this end, the use of a delivery system allowing a sustained release, while protecting growth factors from degradation appears of particular interest. We propose herein the design of a new injectable biphasic system, based on the association of pullulan microbeads (PMBs) into a cellulose-based hydrogel (Si-HPMC), for the TGF-β1 and GDF-5 growth factors sustained delivery. We present for the first time the design and mechanical characterization of both the PMBs and the called biphasic system (PMBs/Si-HPMC). Their loading and release capacities were also studied and we were able to demonstrate a sustained release of both growth factors, for up to 28 days. Noteworthy, the growth factors biological activity on human cells was maintained. Altogether, these data suggest that this PMBs/Si-HPMC biphasic system may be a promising candidate for the development of an innovative bioactive delivery system for IVD regenerative medicine. - Source :PubMed

Endothelial angiogenesis is directed by RUNX1T1-regulated VEGFA, BMP4 and TGF-β2 expression.

Tissue angiogenesis is intimately regulated during embryogenesis and postnatal development. Defected angiogenesis contributes to aberrant development and is the main complication associated with ischemia-related diseases. We previously identified the increased expression of RUNX1T1 in umbilical cord blood-derived endothelial colony-forming cells (ECFCs) by gene expression microarray. However, the biological relevance of RUNX1T1 in endothelial lineage is not defined clearly. Here, we demonstrate RUNX1T1 regulates the survival, motility and tube forming capability of ECFCs and EA.hy926 endothelial cells by loss-and gain-of function assays, respectively. Second, embryonic vasculatures and quantity of bone marrow-derived angiogenic progenitors are found to be reduced in the established Runx1t1 heterozygous knockout mice. Finally, a central RUNX1T1-regulated signature is uncovered and VEGFA, BMP4 as well as TGF-β2 are demonstrated to mediate RUNX1T1-orchested angiogenic activities. Taken together, our results reveal that RUNX1T1 serves as a common angiogenic driver for vaculogenesis and functionality of endothelial lineage cells. Therefore, the discovery and application of pharmaceutical activators for RUNX1T1 will improve therapeutic efficacy toward ischemia by promoting neovascularization. - Source :PubMed

Gentaur adresses


GENTAUR Europe BVBA
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45
Fax 0032 16 50 90 45
info@gentaur.com
GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50
Fax 01 43 25 01 60
france@gentaur.com
dimi@gentaur.com
GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531
Fax 020 8445 9411
uk@gentaur.com
GENTAUR Poland Sp. z o.o.
ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
Tel 058 710 33 44
Fax 058 710 33 48
poland@gentaur.com
GENTAUR Nederland BV
Kuiper 1
5521 DG Eersel Nederland
Tel 0208-080893
Fax 0497-517897
nl@gentaur.com
GENTAUR SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6, 24122 Bergamo
Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com
GENTAUR bulgaria
53 Iskar Str. Kokalyane,
Sofia 1191
Tel 0035929830070
Fax 0035929830072
sofia@gentaur.com
GENTAUR Spain
Tel 0911876558
spain@gentaur.com
GENTAUR USA
Genprice Inc, Logistics
547 Yurok Circle
San Jose, CA 95123
invoicing/ accounting:
6017 Snell Ave, Suite 357
San Jose, CA. 96123
Tel 001 408 780 0908
jane@gentaur.com