RAT ANTI MOUSE CD19 Azide Free

Price:
889 EUR
1066 USD
737 GBP
known as: RAT ANTI MOUSE CD19 Azide Free
Catalog number: genta-ABS0349
Product Quantity: 1 mg
Category:
Supplier: AbD

   CAPTCHA Image   Reload Image

Gene target: cd19

Related genes to: RAT ANTI MOUSE CD19 Azide Free

Symbol : cd19 NIH gene
chromosome : Un
description : CD19 molecule
type of gene : protein-coding
Modification date : 2016-01-23

Related Pathways to: RAT ANTI MOUSE CD19 Azide Free

Gene about :CD19
Pathway :Hs B Cell Receptor Signaling Pathway
CD19

Related product to: RAT ANTI MOUSE CD19 Azide Free

Related Articles about: RAT ANTI MOUSE CD19 Azide Free

Lineage switch from B acute lymphoblastic leukemia to acute monocytic leukemia with persistent t(4;11)(q21;q23) and cytogenetic evolution under CD19-targeted therapy.

- Source :PubMed

HLA Class Ia and Ib Polyreactive Anti-HLA-E IgG2a Monoclonal Antibodies (TFL-006 and TFL-007) Suppress Anti-HLA IgG Production by CD19+ B Cells and Proliferation of CD4+ T Cells While Upregulating Tregs.

The anti-HLA-E IgG2a mAbs, TFL-006 and TFL-007, reacted with all HLA-I antigens, similar to the therapeutic preparations of IVIg. Indeed, IVIg lost its HLA reactivity, when its HLA-E reactivity was adsorbed out. US-FDA approved IVIg to reduce antibodies in autoimmune diseases. But the mechanism underlying IVIg-mediated antibody reduction could not be ascertained due to the presence of other polyclonal antibodies. In spite of it, the cost prohibitive high or low IVIg is administered to patients waiting for donor organ and for allograft recipients for lowering antiallograft antibodies. A mAb that could mimic IVIg in lowering Abs, with defined mechanism of action, would be highly beneficial for patients. Demonstrably, the anti-HLA-E mAbs mimicked several functions of IVIg relevant to suppressing the antiallograft Abs. The mAbs suppressed activated T cells and anti-HLA antibody production by activated B cells, which were dose-wise superior to IVIg. The anti-HLA-E mAb expanded CD4+, CD25+, and Foxp(3)+ Tregs, which are known to suppress T and B cells involved in antibody production. These defined functions of the anti-HLA-E IgG2a mAbs at a level superior to IVIg encourage developing their humanized version to lower antibodies in allograft recipients, to promote graft survival, and to control autoimmune diseases. - Source :PubMed

T cells bearing anti-CD19 and/or anti-CD38 chimeric antigen receptors effectively abrogate primary double-hit lymphoma cells.

Patients with B cell lymphomas bearing MYC translocation combined with translocation involving other genes, such as BCL2, BCL3, or BCL6, defined as double-hit lymphoma (DHL), have a poor prognosis. Recent studies expanded the concept to include double-expressing lymphoma (DEL) that co-overexpresses MYC protein with either of those proteins. Accordingly, we defined cytogenetic DHL and DEL as primary DHL. An adoptive T cell immunotherapy with a chimeric antigen receptor (CAR) has been clinically shown to exhibit cytotoxicity in refractory neoplasias. We revealed the marked cytotoxicity of anti-CD19- and/or anti-CD38-CAR T cells against primary DHL cells from patients. CD19- and/or CD38-specific T cells were co-cultured with cytogenetic DHL (n = 3) or DEL (n = 2) cells from five patients for 3 days. We examined whether T cells retrovirally transduced with each vector showed cytotoxicity against DHL cells. Anti-CD19- and/or anti-CD38-CAR T cells were co-cultured with primary DHL cells at an E:T ratio of 1:2 for 3 days. Anti-CD19- and anti-CD38-CAR T cells completely abrogated these DHL cells, respectively. Anti-CD19-CAR T cells synergistically exerted collaborative cytotoxicity against these primary DHL cells with anti-CD38-CAR T cells. Therefore, refractory DHL cells can be efficiently abrogated by the clinical use of T cells with anti-CD19- and/or anti-CD38-CAR. - Source :PubMed

A review of CD19-targeted immunotherapies for relapsed or refractory acute lymphoblastic leukemia.

Aim Novel immunotherapies have generated high response rates and unique adverse effects among patients with relapsed or refractory acute lymphoblastic leukemia. Therapies engaging endogenous T-cells against acute lymphoblastic leukemia are emerging for children and adults with various poor prognostic factors, thus accurate knowledge of immunotherapies is necessary for their effective implementation in the future. In this review, we evaluate clinical trial data regarding chimeric antigen receptor T-cells and blinatumomab, for the treatment of relapsed or refractory acute lymphoblastic leukemia. Summary In the relapsed or refractory setting, response rates rapidly diminish after subsequent lines of chemotherapy and cumulative toxicities may cause significant patient harm. Immunotherapies provide an approach to improve response rates and minimize traditional toxicities via novel mechanisms of action. Two therapies targeting CD19 antigens expressed on B-cell acute lymphoblastic leukemia lineages, chimeric antigen receptor T-cells, and blinatumomab have induced complete remissions among high-risk patient populations, especially those refractory to multiple therapies. Adverse effects such as cytokine release syndrome and neurologic sequelae remain serious precautions of each therapy. Conclusion Knowledge of immunotherapy mechanisms and clinical outcomes associated with immunotherapies is critical for the optimization of treating patients with relapsed or refractory acute lymphoblastic leukemia. Future use of chimeric antigen receptor T-cells and blinatumomab demands proper assessment of a patient's disease and treatment history in addition to unique monitoring and supportive care interventions. - Source :PubMed

Antibody Conjugated, Raman Tagged Hollow Gold-Silver Nanospheres for Specific Targeting and Multimodal Dark-Field/SERS/Two Photon-FLIM Imaging of CD19(+) B Lymphoblasts.

In this Research Article, we propose a new class of contrast agents for the detection and multimodal imaging of CD19(+) cancer lymphoblasts. The agents are based on NIR responsive hollow gold-silver nanospheres conjugated with antiCD19 monoclonal antibodies and marked with Nile Blue (NB) SERS active molecules (HNS-NB-PEG-antiCD19). Proof of concept experiments on specificity of the complex for the investigated cells was achieved by transmission electron microscopy (TEM). The microspectroscopic investigations via dark field (DF), surface-enhanced Raman spectroscopy (SERS), and two-photon excited fluorescence lifetime imaging microscopy (TPE-FLIM) corroborate with TEM and demonstrate successful and preferential internalization of the antibody-nanocomplex. The combination of the microspectroscopic techniques enables contrast and sensitivity that competes with more invasive and time demanding cell imaging modalities, while depth sectioning images provide real time localization of the nanoparticles in the whole cytoplasm at the entire depth of the cells. Our findings prove that HNS-NB-PEG-antiCD19 represent a promising type of new contrast agents with great possibility of being detected by multiple, non invasive, rapid and accessible microspectroscopic techniques and real applicability for specific targeting of CD19(+) cancer cells. Such versatile nanocomplexes combine in one single platform the detection and imaging of cancer lymphoblasts by DF, SERS, and TPE-FLIM microspectroscopy. - Source :PubMed

Gentaur adresses


GENTAUR Europe BVBA
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45
Fax 0032 16 50 90 45
info@gentaur.com
GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50
Fax 01 43 25 01 60
france@gentaur.com
dimi@gentaur.com
GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531
Fax 020 8445 9411
uk@gentaur.com
GENTAUR Poland Sp. z o.o.
ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
Tel 058 710 33 44
Fax 058 710 33 48
poland@gentaur.com
GENTAUR Nederland BV
Kuiper 1
5521 DG Eersel Nederland
Tel 0208-080893
Fax 0497-517897
nl@gentaur.com
GENTAUR SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6, 24122 Bergamo
Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com
GENTAUR bulgaria
53 Iskar Str. Kokalyane,
Sofia 1191
Tel 0035929830070
Fax 0035929830072
sofia@gentaur.com
GENTAUR Spain
Tel 0911876558
spain@gentaur.com
GENTAUR USA
Genprice Inc, Logistics
547 Yurok Circle
San Jose, CA 95123
invoicing/ accounting:
6017 Snell Ave, Suite 357
San Jose, CA. 96123
Tel 001 408 780 0908
jane@gentaur.com