MOUSE ANTI PIG TNF ALPHA Azide Free

Price:
541 EUR
649 USD
449 GBP
known as: MOUSE ANTI PIG TNF ALPHA Azide Free
Catalog number: genta-ABS0341
Product Quantity: 0.5 mg
Category:
Supplier: AbD

   CAPTCHA Image   Reload Image

Gene target: tnf alpha

Related genes to: MOUSE ANTI PIG TNF ALPHA Azide Free

Symbol : tnf NIH gene
description : tumor necrosis factor
type of gene : protein-coding
Modification date : 2015-11-14

Related Pathways to: MOUSE ANTI PIG TNF ALPHA Azide Free

Gene about :Tnf
Pathway :Rn Toll-like receptor signaling pathway
Tnf

Related product to: MOUSE ANTI PIG TNF ALPHA Azide Free

Related Articles about: MOUSE ANTI PIG TNF ALPHA Azide Free

Infiltrating macrophages in diabetic nephropathy promote podocytes apoptosis via TNF-α-ROS-p38MAPK pathway.

Macrophage infiltration has been linked to the pathogenesis of diabetic nephropathy (DN). However, how infiltrating macrophages affect the progression of DN is unknown. Although infiltrating macrophages produce pro-inflammatory mediators and induce apoptosis in a variety of target cells, there are no studies in podocytes. Therefore, we tested the contribution of macrophages to podocytes apoptosis in DN. in vivo experiments showed that apoptosis in podocytes was increased in streptozocin (STZ)-induced diabetic rats compared with control rats and that this apoptosis was accompanied by increased macrophages infiltration in the kidney. Then, we established a co-culture system to study the interaction between macrophages and podocytes in the absence or presence of high glucose. Macrophages did not trigger podocytes apoptosis when they were co-cultured in the absence of high glucose in a transwell co-culture system. Additionally, although podocyte apoptosis was increased after high glucose stimulation, there was a further enhancement of podocyte apoptosis when podocytes were co-cultured with macrophages in the presence of high glucose compared with podocytes cultured alone in high glucose. Mechanistically, we found that macrophages were activated when they were exposed to high glucose, displaying pro-inflammatory M1 polarization. Furthermore, conditioned media (CM) from such high glucose-activated M1 macrophages (HG-CM) trigged podocytes apoptosis in a reactive oxygen species (ROS)-p38mitogen-activated protein kinases (p38MAPK) dependent manner, which was abolished by either a ROS inhibitor (Tempo) or a p38MAPK inhibitor (SB203580). Finally, we identified tumor necrosis factor (TNF-α) as a key mediator of high glucose-activated macrophages to induce podocytes apoptosis because an anti-TNF-α neutralizing antibody blunted the apoptotic response, excess ROS generation and p38MPAK activation in podocytes induced by HG-CM. Moreover, addition of recombinant TNF-α similarly resulted in podocytes apoptosis. In summary, the TNF-α that was released by high glucose-activated macrophages promoted podocytes apoptosis via ROS-p38MAPK pathway. Blockade of TNF-α secretion from high glucose activated macrophages and ROS-p38MAPK pathway might be effective therapeutic options to limit podocytes apoptosis and delay the progression of diabetic nephropathy. - Source :PubMed

Polymorphisms of the TNF-α gene interact with plasma fatty acids on inflammatory biomarker profile: a population-based, cross-sectional study in São Paulo, Brazil.

The aim of the present study was to investigate the relationship of four TNF-α SNP with inflammatory biomarkers and plasma fatty acids (FA), and the interaction among them in a population-based, cross-sectional study in São Paulo, Brazil. A total of 281 subjects, aged >19 and <60 years, participated in a cross-sectional, population-based study performed in Brazil. The following SNP spanning the TNF-α gene were genotyped: -238G/A (rs361525), -308G/A (rs1800629), -857C/T (rs1799724) and -1031T/C (rs1799964). In all, eleven plasma inflammatory biomarkers and plasma FA profile were determined. To analyse the interaction between TNF-α SNP and plasma FA, a cluster analysis was performed to stratify individuals based on eleven inflammatory biomarkers into two groups used as outcome: inflammatory (INF) and non-inflammatory clusters. The -238A allele carriers had higher TNF-α (P=0·033), IL-6 (P=0·013), IL-1β (P=0·037), IL-12 (0·048) and IL-10 (P=0·010) than the GG genotype. The -308A allele carriers also had lower levels of plasma palmitoleic acid (P=0·009), oleic acid (P=0·039), total MUFA (P=0·014), stearoyl-CoA desaturase (SCD) activity index-16 (P=0·007), SCD-18 (P=0·020) and higher levels of PUFA (P=0·046) and DHA (P=0·044). Significant interactions modifying the risk of belonging to the INF cluster were observed with inflammatory cluster as outcome between -857C/T and plasma α-linolenic acid (P=0·026), and also between -308G/A and plasma stearic acid (P=0·044) and total SFA (P=0·040). Our study contributes to knowledge on TNF-α SNP and their association with inflammatory biomarker levels, plasma FA and the interaction among them, of particular interest for the Brazilian population. - Source :PubMed

Tumour necrosis factor (TNF) inhibitor-induced isolated pleural granulomas: a rare adverse effect.

A 53-year-old man with a history of Crohn's disease on infliximab, presented with several weeks of cough and dyspnoea. He had a right-sided pleural effusion, found to be exudative with lymphocytic predominance. He underwent right-sided video-assisted thoracic surgery (VATS) with biopsies and pleurodesis. Histopathology showed pleural-based non-caseating granulomas with unremarkable lung parenchyma. Cultures were only positive for Propionibacterium acnes 8 months later, he was found to have a left-sided exudative, lymphocytic predominant pleural effusion. Left-sided VATS and biopsies again showed pleural-based non-caseating granulomas with normal lung parenchyma. Having ruled out an active infection and malignant lesions, we diagnosed infliximab-induced pleural granulomas. Infliximab was stopped. The patient continues to do well at 6 years of follow-up. We believe this is the first report of tumour necrosis factor (TNF) inhibitor-induced isolated pleural granulomas. P. acnes and cytokine imbalance might be responsible for the pathogenesis of TNF inhibitor-induced granulomas. - Source :PubMed

Retraction: Adora2b Adenosine Receptor Signaling Protects during Acute Kidney Injury via Inhibition of Neutrophil-Dependent TNF-α Release.

- Source :PubMed

TNF phase III signalling in tolerant cells is tightly controlled by A20 and CYLD.

Following the acute phase of an inflammatory reaction, a strictly controlled resolution of inflammation is necessary. A dysregulation of this process leads to hyperinflammation, chronic inflammatory disease, or immune paralysis. Different mechanisms participate in the coordinated termination of the inflammatory process, e.g. the expression of antiinflammatory molecules and different forms of tolerance. To better understand the processes which mediate resolution of TNF-dependent inflammation and induce tolerance, it is necessary to characterize the signal transduction quality during TNF long-term (pre)incubation. Within a time frame from 12 to 48h, designated as phase III of the TNF response, we measured an ongoing, constitutive activation of TNFR1/NF-κB-dependent pathways in monocytic cells. Phase III signalling which was also named "constitutive signaling in TNF tolerant cells" induces the expression of low- and high-sensitive target genes including A20 which is differentially regulated by transcriptional and proteolytic events. A20 strictly controls TNF long-term constitutive signalling in an IκB kinase complex- and partially RIP-dependent manner supported by adjuvant ABIN1. In addition, CYLD proteins participate in the regulation of this late-phase signal transduction, whereas downstream molecules such as Bcl3 and p50 are not involved. A20 and CYLD are expressed with different mRNA kinetics resulting in a strong or only a modest increase in protein levels, respectively. The identification of mechanisms which contribute to the termination of inflammation will provide additional diagnostic and therapeutic aspects to specifically diagnose certain aspects of inflammation and specifically modulate them. - Source :PubMed

Gentaur adresses


GENTAUR Europe BVBA
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45
Fax 0032 16 50 90 45
info@gentaur.com
GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50
Fax 01 43 25 01 60
france@gentaur.com
dimi@gentaur.com
GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531
Fax 020 8445 9411
uk@gentaur.com
GENTAUR Poland Sp. z o.o.
ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
Tel 058 710 33 44
Fax 058 710 33 48
poland@gentaur.com
GENTAUR Nederland BV
Kuiper 1
5521 DG Eersel Nederland
Tel 0208-080893
Fax 0497-517897
nl@gentaur.com
GENTAUR SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6, 24122 Bergamo
Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com
GENTAUR bulgaria
53 Iskar Str. Kokalyane,
Sofia 1191
Tel 0035929830070
Fax 0035929830072
sofia@gentaur.com
GENTAUR Spain
Tel 0911876558
spain@gentaur.com
GENTAUR USA
Genprice Inc, Logistics
547 Yurok Circle
San Jose, CA 95123
invoicing/ accounting:
6017 Snell Ave, Suite 357
San Jose, CA. 96123
Tel 001 408 780 0908
jane@gentaur.com