MOUSE ANTI HUMAN INTERFERON GAMMA Azide Free

Price:
889 EUR
1066 USD
737 GBP
known as: MOUSE ANTI HUMAN INTERFERON GAMMA Azide Free
Catalog number: genta-ABS0275
Product Quantity: 1 mg
Category:
Supplier: AbD

   CAPTCHA Image   Reload Image

Gene target: interferon gamma

Related genes to: MOUSE ANTI HUMAN INTERFERON GAMMA Azide Free

Symbol : gamma NIH gene
LocusTag : pSM19035_005
description : topoisomerase
type of gene : protein-coding
Modification date : 2015-07-09

Related Pathways to: MOUSE ANTI HUMAN INTERFERON GAMMA Azide Free

Gene about :Gamma
Pathway :Rn Relationship between glutathione and NADPH
Gamma

Related product to: MOUSE ANTI HUMAN INTERFERON GAMMA Azide Free

Related Articles about: MOUSE ANTI HUMAN INTERFERON GAMMA Azide Free

Identification and characterization of intramolecular γ-halo interaction in d(0) complexes: a theoretical approach.

A mechanistic investigation to detect intramolecular M⋯X-C type interactions in d(0) neutral and cationic complexes was carried out through a benchmark study employing different density functional methods. As γ-halogen is involved in M⋯X-C type interactions, it is denoted as a γ-halo interaction and the respective conformers are designated as halo-conformers. By analyzing the geometrical parameters of halo-conformers, it was observed that, irrespective of the nature of the metal and the halogen, the Cγ-X bond distance increases compared to the usual C-X bond, which brings the M and X centers close enough to generate a weak interaction. Generation of the M⋯X-C interaction was confirmed by performing NBO, AIM and Wiberg bond index analyses, from which the persistence of γ-halo interaction was seen to be prominent. Moreover, for each neutral and cationic complex, the values of Wiberg bond order are in good agreement with the AIM results. The effect of the metal center, as well as γ-halogen substitution, on γ-halo interaction was also studied in the present work. To justify the practical subsistence of the halo-conformers, we checked the stability of the conformers with respect to their β-conformers by comparing the zero-point-corrected electronic energies. Therefore, the entire study was designed in such a way that it can provide evidence in support of intramolecular M⋯X-C interactions, where, instead of the C-H bond, the Cγ-X bond will interact with the central transition metal. - Source :PubMed

Docosahexaenoic acid promotes oligodendrocyte differentiation via PPAR-γ signalling and prevents tumor necrosis factor-α-dependent maturational arrest.

Docosahexaenoic acid (DHA) is an essential omega-3 fatty acid known to be neuroprotective in several models of human diseases, including multiple sclerosis. The protective effects of DHA are largely attributed to its ability to interfere with the activity of transcription factors controlling immune and inflammatory responses, including the agonist-dependent transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ). In this study, we used primary oligodendrocyte progenitor (OP) cultures from neonatal rat brain to investigate whether DHA could influence OP maturation and directly promote myelination, as previously reported for selective PPAR-γ agonists. We show that, similarly to the selective PPAR-γ agonist pioglitazone (PGZ), DHA promotes OP maturation and counteracts the maturational arrest induced by TNF-α, used to mimic inflammatory conditions. The PPAR-γ antagonist GW9662 prevented both DHA-induced OP maturation and PPAR-γ nuclear translocation, supporting the hypothesis that DHA acts through the activation of PPAR-γ. In addition, both PGZ and DHA induced the phosphorylation of extracellular signal-regulated-kinase 1-2 (ERK1/2), in a PPAR-γ-dependent manner. ERK1/2 activity is known to regulate the transition from OPs to immature oligodendrocytes and the presence of specific inhibitors of ERK1/2 phosphorylation (U0126 or PD98059) prevented the differentiating effects of both DHA and PGZ. These results indicate that DHA might influence the process of OP maturation through its PPAR-γ agonistic activity and provide novel molecular mechanisms for the action of this dietary fatty acid, further supporting the nutritional intervention in demyelinating diseases such as multiple sclerosis. - Source :PubMed

Wogonin attenuates inflammation by activating PPAR-γ in alcoholic liver disease.

Alcoholic liver disease (ALD) is one of the predominant causes of liver-related morbidity and mortality worldwide. However, effective therapy for ALD is still lacking. Wogonin, a major flavonoid compound, is found in Scutellaria baicalensis Georgi. Accumulating studies have revealed that wogonin possesses anti-inflammatory and anti-tumour activities in various models. However, the hepatoprotective activity of wogonin in ALD is still obscure. In this study, we found that wogonin significantly attenuated inflammatory response in EtOH-fed mice, and reduced the expression of inflammatory cytokines such as TNF-α and IL-6 in EtOH-induced RAW264.7 cells. Furthermore, our findings showed that wogonin remarkably induced the expression of PPAR-γ in vivo and in vitro. Compared with the wogonin-treated group, blockade of PPAR-γ with inhibitor (T0070907) or PPAR-γ small interfering (si)-RNA were applied in RAW264.7 cells to evaluate the involvement of wogonin in alleviating EtOH-induced inflammation. Moreover, forced expression of PPAR-γ further suppressed the expression of TNF-α and IL-6 when treated with wogonin on EtOH-induced RAW264.7 cells. In addition, it was demonstrated that wogonin remarkably suppressed PPAR-γ-meditated phosphorylation and activation of NF-κB-P65. In conclusion, our results indicated that wogonin may serve as an effective modulator of PPAR-γ by down-regulating NF-κB pathway, thereby attenuated inflammatory response in ALD. - Source :PubMed

Proteome dynamics during post-desiccation recovery reveal convergence of desiccation and gamma radiation stress response pathways in Deinococcus radiodurans.

Deinococcus radiodurans is inherently resistant to both ionizing radiation and desiccation. Fifteen months of desiccation was found to be the LD50 dose for D. radiodurans. Desiccated cells of D. radiodurans entered 6h of growth arrest during post-desiccation recovery (PDR). Proteome dynamics during PDR were mapped by resolving cellular proteins by 2-dimensional gel electrophoresis coupled with mass spectrometry. At least 41 proteins, represented by 51 spots on proteome profiles, were differentially expressed throughout PDR. High upregulation in expression was observed for DNA repair proteins involved in single strand annealing (DdrA and DdrB), nucleotide excision repair (UvrA and UvrB), homologous recombination (RecA) and other vital proteins that contribute to DNA replication, recombination and repair (Ssb, GyrA and GyrB). Expression of CRP/FNR family transcriptional regulator (Crp) remained high throughout PDR. Other pathways such as cellular detoxification, protein homeostasis and metabolism displayed both, moderately induced and repressed proteins. Functional relevance of proteomic modulations to surviving desiccation stress is discussed in detail. Comparison of our data with the published literature revealed convergence of radiation and desiccation stress responses of D. radiodurans. This is the first report that substantiates the hypothesis that the radiation stress resistance of D. radiodurans is incidental to its desiccation stress resistance. - Source :PubMed

IL-18/IL-15/IL-12 synergy induces elevated and prolonged IFN-γ production by ex vivo expanded NK cells which is not due to enhanced STAT4 activation.

The synergistic effect of IL-18/IL-15/IL-12 stimulation potently activates NK cells, inducing high levels of IFN-γ production. As a result of this potent stimulatory effect, NK cell pre-activation with IL-18/IL-15/IL-12 is being developed as a cancer immunotherapy. Ex vivo expansion of NK cells enables the efficient generation of large numbers of NK cells for wide-scale and repeated therapeutic use, and is thus an important source of NK cells for clinical application. However, the effects of IL-18/IL-15/IL-12 stimulation on ex vivo expanded NK cells have not yet been assessed. Thus, the present study assessed the effects of IL-18/IL-15/IL-12 stimulation on NK cells expanded ex vivo using K562-based artificial antigen presenting cells expressing membrane-bound IL-21. We report that ex vivo expanded NK cells stimulated with IL-18/IL-15/IL-12 produce high levels of IFN-γ and TNFα, have potent cytotoxicity, and maintain prolonged IFN-γ production following removal of stimulation. IL-18/IL-15/IL-12 stimulation induces a phenotypically unique IFN-γ-producing population with reduced CD16 expression and greater CD25 expression as compared to stimulated IFN-γ- NK cells and unstimulated NK cells. We elucidate that the mechanism of synergy for induction and maintenance of IFN-γ production is not due to a further enhancement of STAT4 activation compared to stimulation with IL-12 alone. Furthermore, we demonstrate that the synergistic increase in IFN-γ is not solely under translational regulation, as elevated levels of IFN-γ mRNA contribute to the synergistic increase in IFN-γ. Overall, this study characterizes the response of ex vivo expanded NK cells to IL-18/IL-15/IL-12 stimulation and supports the use of ex vivo expanded NK cells as a feasible and efficient source of IL-18/IL-15/IL-12 pre-activated NK cells for adoptive transfer in cancer immunotherapies. - Source :PubMed

Gentaur adresses


GENTAUR Europe BVBA
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45
Fax 0032 16 50 90 45
info@gentaur.com
GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50
Fax 01 43 25 01 60
france@gentaur.com
dimi@gentaur.com
GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531
Fax 020 8445 9411
uk@gentaur.com
GENTAUR Poland Sp. z o.o.
ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
Tel 058 710 33 44
Fax 058 710 33 48
poland@gentaur.com
GENTAUR Nederland BV
Kuiper 1
5521 DG Eersel Nederland
Tel 0208-080893
Fax 0497-517897
nl@gentaur.com
GENTAUR SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6, 24122 Bergamo
Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com
GENTAUR bulgaria
53 Iskar Str. Kokalyane,
Sofia 1191
Tel 0035929830070
Fax 0035929830072
sofia@gentaur.com
GENTAUR Spain
Tel 0911876558
spain@gentaur.com
GENTAUR USA
Genprice Inc, Logistics
547 Yurok Circle
San Jose, CA 95123
invoicing/ accounting:
6017 Snell Ave, Suite 357
San Jose, CA. 96123
Tel 001 408 780 0908
jane@gentaur.com