MOUSE ANTI MBP (aa82_91)

Price:
430 EUR
516 USD
356 GBP
known as: MOUSE ANTI MBP (aa82_91)
Catalog number: genta-ABS0174
Product Quantity: 0.25 ml
Category:
Supplier: AbD

   CAPTCHA Image   Reload Image

Gene target: mbp aa82 91

Related genes to: MOUSE ANTI MBP (aa82_91)

Symbol : MBP NIH gene
description : steroid membrane binding protein-like
type of gene : protein-coding
Other designations : putative steroid membrane binding protein
Modification date : 2015-11-14

Related Pathways to: MOUSE ANTI MBP (aa82_91)

Gene about :Mbp
Pathway :Rn Spinal Cord Injury
Mbp

Related product to: MOUSE ANTI MBP (aa82_91)

Related Articles about: MOUSE ANTI MBP (aa82_91)

On the significance of craniosynostosis in a case of Kabuki syndrome with a concomitant KMT2D mutation and 3.2 Mbp de novo 10q22.3q23.1 deletion.

Craniosynostosis has rarely been described in patients with Kabuki syndrome. We report here a boy with facial asymmetry due to combined premature synostosis of the right coronal and sagittal sutures as well as several symptoms reminiscent of Kabuki syndrome (KS). Our case supports previous observations and suggests that craniosynostosis is a part of the KS phenotype. The uniqueness of our case is the sporadic co-occurrence of two genetic disorders, that is, a de novo frameshift variant in the KMT2D gene and a de novo 3.2 Mbp 10q22.3q23.1 deletion. Our findings emphasize the importance of the initial clinical assessment of children with craniosynostosis and that genomic and monogenic disorders, such as Kabuki syndrome, should be considered among the differential diagnoses of syndromic forms of craniosynostosis. - Source :PubMed

Expression and Purification of Recombinant Proteins in Escherichia coli with a His6 or Dual His6-MBP Tag.

Rapid advances in bioengineering and biotechnology over the past three decades have greatly facilitated the production of recombinant proteins in Escherichia coli. Affinity-based methods that employ protein or peptide based tags for protein purification have been instrumental in this progress. Yet insolubility of recombinant proteins in E. coli remains a persistent problem. One way around this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) is widely acknowledged as a highly effective solubilizing agent. In this chapter, we describe how to construct either a His6- or a dual His6-MBP tagged fusion protein by Gateway(®) recombinational cloning and how to evaluate their yield and solubility. We also describe a simple and rapid procedure to test the solubility of proteins after removing their N-terminal fusion tags by tobacco etch virus (TEV) protease digestion. The choice of whether to use a His6 tag or a His6-MBP tag can be made on the basis of this solubility test. - Source :PubMed

Frontline Science: Eosinophil-deficient MBP-1 and EPX double-knockout mice link pulmonary remodeling and airways dysfunction with type 2 inflammation.

Eosinophils and the release of cationic granule proteins have long been implicated in the development of the type 2-induced pathologies linked with respiratory inflammation. Paradoxically, the ablation of the two genes encoding the most abundant of these granule proteins, major basic protein-1 (MBP-1) and eosinophil peroxidase (EPX), results in a near collapse of eosinophilopoiesis. The specificity of this lineage ablation and the magnitude of the induced eosinopenia provide a unique opportunity to clarify the importance of eosinophils in acute and chronic inflammatory settings, as well as to identify potential mechanism(s) of action linked with pulmonary eosinophils in those settings. Specifically, we examined these issues by assessing the induced immune responses and pathologies occurring in MBP-1(-/-)/EPX(-/-) mice after 1) ovalbumin sensitization/provocation in an acute allergen-challenge protocol, and 2) crossing MBP-1(-/-)/EPX(-/-) mice with a double-transgenic model of chronic type 2 inflammation (i.e., I5/hE2). Acute allergen challenge and constitutive cytokine/chemokine expression each induced the accumulation of pulmonary eosinophils in wild-type controls that was abolished in the absence of MBP-1 and EPX (i.e., MBP-1(-/-)/EPX(-/-) mice). The expression of MBP-1 and EPX was also required for induced lung expression of IL-4/IL-13 in each setting and, in turn, the induced pulmonary remodeling events and lung dysfunction. In summary, MBP-1(-/-)/EPX(-/-) mice provide yet another definitive example of the immunoregulatory role of pulmonary eosinophils. These results highlight the utility of this unique strain of eosinophil-deficient mice as part of in vivo model studies investigating the roles of eosinophils in health and disease settings. - Source :PubMed

How human IgGs against myelin basic protein (MBP) recognize oligopeptides and MBP.

Myelin basic protein (MBP) is a major protein of myelin-proteolipid shell of axons, and it plays an important role in pathogenesis of multiple sclerosis. In the literature, there are no data on how antibodies recognize different protein antigens including MBP. A stepwise increase in ligand complexity was used to estimate the relative contributions of virtually every amino acid residue (AA) of a specific 12-mer LSRFSWGAEGQK oligopeptide corresponding to immunodominant sequence of MBP to the light chains and to intact anti-MBP IgGs from sera of patients with multiple sclerosis. It was shown that the minimal ligands of the light chains of IgGs are many different free AAs (Kd  = 0.51-0.016 M), and each free AA interacts with the specific subsite of the light chain intended for recognition of this AA in specific LSRFSW oligopeptide. A gradual transition from Leu to LSRFSWGAEGQK leads to an increase in the affinity from 10(-1) to 2.3 × 10(-4)  M because of additive interactions of the light chain with 6 AAs of this oligopeptide and then the affinity reaches plateau. The contributions of 6 various AAs to the affinity of the oligopeptide are different (Kd , M): 0.71 (S), 0.44 (R), 0.14 (F), 0.17 (S), and 0.62 (W). Affinity of nonspecific oligopeptides to the light chains of IgGs is significantly lower. Intact MBP interacts with both light and heavy chains of IgGs demonstrating 192-fold higher affinity than the specific oligopeptide. It is a first quantitative analysis of the mechanism of proteins recognition by antibodies. The thermodynamic model was constructed to describe the interactions of IgGs with MBP. The data obtained can be very useful for understanding how antibodies against many different proteins can recognize these proteins. - Source :PubMed

Variation within MBP gene predicts disease course in multiple sclerosis.

Prognosis following a first demyelinating event is difficult to predict, with no genetic markers of MS progression currently identified. Myelin basic protein (MBP) is a major component of the myelin sheath of CNS neurons and may play a central role in demyelinating diseases such as MS. However, genetic variation in MBP has not been implicated in MS onset risk in large genome-wide association studies. We hypothesized that genetic variations in MBP may be a determinant of MS clinical course. - Source :PubMed

Gentaur adresses


GENTAUR Europe BVBA
Voortstraat 49, 1910 Kampenhout BELGIUM
Tel 0032 16 58 90 45
Fax 0032 16 50 90 45
info@gentaur.com
GENTAUR France SARL
9, rue Lagrange, 75005 Paris
Tel 01 43 25 01 50
Fax 01 43 25 01 60
france@gentaur.com
dimi@gentaur.com
GENTAUR Ltd.
Howard Frank Turnberry House
1404-1410 High Road
Whetstone London N20 9BH
Tel 020 3393 8531
Fax 020 8445 9411
uk@gentaur.com
GENTAUR Poland Sp. z o.o.
ul. Grunwaldzka 88/A m.2
81-771 Sopot, Poland
Tel 058 710 33 44
Fax 058 710 33 48
poland@gentaur.com
GENTAUR Nederland BV
Kuiper 1
5521 DG Eersel Nederland
Tel 0208-080893
Fax 0497-517897
nl@gentaur.com
GENTAUR SRL IVA IT03841300167
Piazza Giacomo Matteotti, 6, 24122 Bergamo
Tel 02 36 00 65 93
Fax 02 36 00 65 94
italia@gentaur.com
GENTAUR bulgaria
53 Iskar Str. Kokalyane,
Sofia 1191
Tel 0035929830070
Fax 0035929830072
sofia@gentaur.com
GENTAUR Spain
Tel 0911876558
spain@gentaur.com
GENTAUR USA
Genprice Inc, Logistics
547 Yurok Circle
San Jose, CA 95123
invoicing/ accounting:
6017 Snell Ave, Suite 357
San Jose, CA. 96123
Tel 001 408 780 0908
jane@gentaur.com